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Abstract. We have exiended the Monte Carlo renormalization group technique 1o study
the dynamics of driven interface systems. The method allows systematic elimination of
irrelevant scaling fields and thus helps in extracting the asymptolic scaling behaviour. In
particular, it can be applied to determine scaling exponents from a malching criteria.
We have applied ihis meibod to interfaces evoiving according to the Kardar, Parisi and
Zhang equation.

The dynamic evolution of spatial patterns is one of the most exciting areas of nonlin-
ear phenomenology. A particular aspect of this general problem involves the growth
of thin interfaces in far-from-equilibrium conditions. Well known examples include
directional solidification in binary alloy systems {1], dendritic growth [2}, viscous
fingering in Hele-Shaw cell [3], and film growth by vapour deposition [4]. These
problems usually involve nonlinear, non-local dynamical equations for the time evolu-
tion of the interface shape (for recent reviews, see [5]). Recently, Jasnow and Vifals
provided evidence that the transient dynamics in the viscous fingering problem has a
self-similar growth regime [6). They further developed a numerical renormalization
group (RG) method to extract the scaling exponents of such a growing interface. In
this method, one maps the two phases separated by the interface onto a spin sys-
tem upon which the usual Wilson-type block-spin transformation is applied [7]. The
transverse length scale, i.e. the finger width, is then used to force a match at different
times and different blockage. From these matching conditions one obtains the scaling
exponent [6-8]

While the method of Jasnow and Vifials is ideal for dynamical systems where a
finite wavelenpth pattern is selected, such as in the viscous fingering problem, there
are other situations where there is no such selection and the interface shape is ran-
dom. In this case a proper matching condition is needed if one is to apply numerical
RG. Furthermore, there are cases where the transverse and longitudinal lengths scale
differently [9]—special care must be taken in these situations. The purpose of this
short articie is to present a generaiization of the Monte Cario renormaiization groupf
(MCRG) technique applicable to problems of interface dynamics far from equilibrium.
As an illustration we apply the MCRG method to the problem of kinetic roughening
of an interface growing under non-equilibrium conditions [11].

t By Monte Carto renormalization we mean a numerical RG. For a review see [i0].
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Perhaps the simplest model for kinetic roughening in driven interface growth is
the stochastic nonlinear partial diffcrential equation proposed by Kardar, Parisi and
Zhang (xrZ) [12]:
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Here h(=x,t) is the height of the interface from a reference plane at position = and
time ¢. It is assumed to be a single valued function. The stochastic noise n satisfies
Gaussian statistics with a second moment
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Consider the behawour of an interface evolving according to (1). With time, noise
causes the interface to roughen and form correlations of the heights on ever larger
length scales (see figure 1). The nonlincar term, which has a purely kinetic origin,
causes the average position of the interface to move forward in time. The interface
therefore never equilibrates, but rather reaches a steady state. In the absence of the
nonlinear term, (1) describes the dynamics of equilibrium roughening [13].

While the KPZ equation is an important model for driven surface growth, its
importance extends into several other physics problems. For example, it describes
the Jong-time behaviour of a randomly stirred fluid [14], the growth properties of the
Eden model (see, for example, [15]), the behaviour of directed polymers in random
media [16], and the evolution of flame fronts {17]. This is due to the fact that the
KPZ equation is a variant of the ubiquitous noise-driven Burger’s equation.

In studying the kinetics of driven interfaces, the universal, long-time, long-
wavelength properties of the interfacial width W are of particular interest. The
scaling behaviour of W, and that of the associated correlation functions, is given by
the scaling exponents x and z, which determine the scaling of the height and time
variables, respectively. Because of the Galillean invariance of the KPZ equation, these
exponents obey a scaling relation

x+z=2 (3)

At early time t < L°, the width scales like W ~ ¢ f(:1L-*), where 3 = x/z and L
denotes the linear system size. At late times ¢ 3» LX, the width saturates according
to W ~ LXg(tL=?). Here g(x) and f(x) are scaling functions [9]. Since W is
essentially the one-point correfation function, this scaling indicates that the transverse
(=) and longitudinal (k) lengths scale differently with L.

For substrate dimension d = 1 (and spatial dimension d + 1), the exponents can
be calculated exactly [12]: x = § and z = . These values have been confirmed by
many numerical studies. For the more interesting case of d = 2, no exact results are
known and one is forced to use numerical solutions, However, numerical studies are
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a unique answer [18-20]. The numerical difficulty one is faced with at d = 2, the
critical dimension of the KPz cquation, is actually a common one. For instance,
the numerical simulations on the stochastic Sivashinsky equation, the equation which
describes certain flame front propagation, is also hampered by similar difficulties [23,
22 (and references therein)).
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two interfaces on the lower right are the same system at RG stages m = 1 and 2.
Configurations on the lower left are those for the syste of size L = 2048 at t = 141,
and the same system with onc stage of renormalization. Note the similarilies between
the corresponding sized system.

It is known that MCRG study is useful when the dynamics is controlted by several
fixed points; these cause severe crossover effects in most numerical studies. In these
situations transicnt behaviour often obscures the true asymptotic behaviour of the
system, particularly when the properties are only accessible through simulations on
finite-sized lattices. The RG transformation helps by iterating away irrelevant length
scales, driving the system closer towards the fixed point controlling the asymptotic
dynamics. Recent successes in the application of MCRG to non-equilibrium systems
include studies of the kinetics of domain growth (7], spinodal decomposition [8], the
transient dynamics of viscous fingering mentioned previously {6] and a study on aggre-
gation processes [23]. While there is no theoretical proof that the RG transformations
used in these works lead to a physical fixed point, the final results derived from the
transformations do indicate that the method is correct. In the following, we will thus
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be guided by the RG transformations used there.

From figure 1, it is clear that the interface evolving according to (1), after a
Wilson-type ‘block-spin’ transformation (see later), is similar to its earlier state. The
system remains approximately invariant under a change of length scales, provided
we rescale both the height and time properly. The relationship between the two,
combined with the scaling relation (3), determines the value of the exponents.

We first numerically integrated the Xrz equation on a grid to some time ¢. The
transverse coordinate = was then divided into cells of lincar size b = 2. The height
variables h(x) inside each cell was averaged and then rescaled by a factor bX. This
completes a level of RG transformation. We repeat this procedure to get higher
levels of the transformation. Figure 1 shows typical results for d = 1. For all
levels of renormalization m, we measuted the interfacial width W(L¢, m,t) =
G-tz

We obtained z through the Iollowing matching procedure. In principle, after the
irrelevant variables have been iterated away, and the system is close to its strong-
coupling fixed point, the probability distributions governing the system remain in-
variant under further renormalizations. Therefore, any quantity determined after m
transformations of the interface of size L? should be identical to those obtained af-
ter m + 1 transformations of a (Lb)? sized system. However, since the time scales
in the larger system have been renormalized one more time, the quantities will be
at different times ¢ and ¢; ie. W(L%, m,t) = W((Lb)%, m + 1,1). This is our
matching criterion. The time rescaling factor is then related to z by t'/t = b*. To
ensure that the system is close enough to its fixed point, the matching should occur
over several values of m. In order for this procedure to work, one must know how
to rescale the height variables properly. In other words, we must know x, whose
value is, as yet unknown. We therefore chose many trial values for x and used the
matching condition to get a corresponding =. These values were then used to check
whether (3) is obeyed. The pair that satisfied this relation with the smallest error was
taken to be the asymptotic result. We refer this procedure as ‘predicted matching’
since the value of z is predicted from matching.

In d = 1, we integrated the KpPZ equation using an Euler scheme up to ¢ = 400
using a mesh size of Az = 1.0 and a time step At = 0.01. The parameters were
chosen to be 2D/At = 1, v = 1.0 and A = 70. We studied systems of size
L = 4096 and L = 2048. To obtain reasonable statistics we averaged over 100
independent runs for each L. In this case seven different matchings as described
carlier were carried out. From this matching procedure, our estimates from matching
at different levels of the RG are listed in table 1. Note that the values of y have
essentially converged after three RG levels on the larger system, This gives an average
vajue of x = 0.48 and » = 1.52, with an error of about 5%, in reasonable agreement
with the known results.

As a second check, we assumed the time rescaling relationship /¢ = 0% was true
explicitly. Thus giving a time ¢ of the 2048 system, the corresponding ¢ of the 4096
system is computed. If the values used for x and z were correct, the widths of the
two systems at ¢ and ¢’ should be equal—differences between the widths were taken
to be due to an incorrect choice of the exponent x. For each pair of the trial x and z,
the percentage errors between the widths were calculated as function of time ¢. The
value of the exponents for which the error is smallest served as a selection criterion.
Note this ‘forced matching’ procedure assumes a value for z in the beginning. The
results of this procedure are listed in table 1. The estimated values of the exponents
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Table 1. Roughness exponent x in one dimension for different fevels of RG. System sizes
of L. = 2048 and 4096 are used to do the matching. Other parameters are v = 1.0,
A=70,2D/At =1, At = 0.01. The first row lists the matching levels of RG on
each system. The second row are values of x from forced matching. The third row are
from predicted matching. The values have essentially converged after three RG levels.

0/1 12 pIE] 34 4/5 5/6 617

0.476 0.480 0482  0.4382 0484 0483 0.481
0475 0.479 0480  0.482 0.481 0482 0478

are x = 0.48 and z = 1.52, with errors of about 5%. Again, these results are
consistent with the known results.

For d = 2, the same procedure was repeated. We integrated the Kpz equation
up to t = 160 using At = 0.001 and Az = 1.0. The parameters were chosen to
be 2D/At =1, v = 1.0 and X = 240. We simulated systems of size L? = 5122
and L? = 2562 The results were averaged over 40 and 50 independent runs for the
two systems respectively. To make sure that one is well into the asymptotic regime,
two test runs were also performed up to t = 750 for cach of the systems. The two
different matching procedures mentioned previously were applied here and the results
are listed in table 2. The values of x have not converged for the five levels of RG
possible on these system sizes. The last stage of RG gives x = 0.298 and z = 1.7,
which indicates § = 0.17. The values of 3 for all stages of RG are smaller than that
of [20], and closer to those in [18] and [19]. However, in order to make a conclusive
study, larger systems are needed such that more RG iterations can be carried outf.

Table 2. Roughness exponemt 1y in two dimensions for different levels of RG. Linear
system sizes of I = 256 and 512 are used to do the matching. Other paramelers are
v=1.0, A=7240,2D/At =1, At = 0.001. The first row lists the matching levels
of rRG on each system. The second row are values of x from forced matching. The third
row are from predicled maiching.

h /1 172 23 34 45

- 0.561 0230 0263 0281 0298
\. 0160 0230 0263 0282 02

As mentioned previously, the RG transformations help to iterate irrelevant length
scale away and reveal the asymptotic behaviour of the dynamics. It also allows us to
study the crossover effect known to occur in the Kpz equation [24, 25], in d = 1.
We used the same parameters as quoted earlier except that the nonlinear coupling
constant was smaller, A = 30. This value of A gives quite a wide range in time over
which the system crosses over from the trivial fixed point controlling the equilibrium
roughening dynamics to the strong coupling fixed point of the KPZ equation [24].
We integrated KPZ equation to + = 200 and averaged over 200 independent runs.
Fixing the exponent x = 0.5, the matching procedures described earlier gave values
of z at various times. However, at a given time, we expect that higher levels of
RG should give values closer to the asymptotic result. In figure 2 the values of = at

t The current study required more than 300 CPU hours on a Cray XMP computer. A comparable study
of larger-sized systems in 2+1 dimensions will require at least 20 to 50 times more computer time.
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different times are plotted for RG levels of m = 2,4, 6 on the larger system, which is
matched with m = 1,3, 5 of the smaller system. We found that higher level matching
consistently gives values closer to the asymptotic result z = 1.5 at earlier times. This
indeed indicates that the RG procedure jterates irrelevant scales away making the
system closer to the asymptotic regime. A similar trend was also observed in d = 2.
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Figure 2. The exponent z in d = 1 obtained from the matching procedure at different
limes, for two systems of sizes L = 4096 and [, = 2048 respectively. Other parameters
are v = 1, A =30, D/At =1, and At = 0.01. The full curve is for matching of
RG levels = 6 with m = 5 of the two systems; the dotted curve is for m = 4 with
m = 3; the broken curve is or mn = 2 with m = 1, Note higher ieveis of rRG give
values of z closer to the asymptotic result at earlier times.

To conclude, we have extended the MCRG technique to driven interface dynamics,
in particular to the KPZ equation. We believe that this method is general and can be
readily applied to other systems where dynamic scaling is present.
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