
A Monte Carlo renormalization group study of driven interface dynamics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 3507

(http://iopscience.iop.org/0305-4470/25/12/012)

Download details:

IP Address: 171.66.16.58

The article was downloaded on 01/06/2010 at 16:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 25 (1992) 3507-3513. Plinted in the LJK 

A Monte Carlo renormalization group study of driven 
interfzce dynamics 

Christopher Rolandt and Hang Guoi 
t AT&T Dell laboralones, KIO Mountain Avenue, Mumy Hill, NJ 07974, USA 
t Cenler for h e  Physics of Materials. Depanment of Physics, McGill University, %io0 
University Street, Monfreal, Quebec, Canada H3A 2T8 

Received 12 November 1991 

AbslrncL We have atended lhe Monte Carlo renomaliution group technique 10 sludy 
lhe dynamics of driven interface systems. The method allows syslematic elimination of 
irelevant scaling fields and lhus helps in exlracting the asymplotic scaling behaviour. In 
panicular, it can be applied to determine solling exponenls from a matching nitelia. - h v e  appiied this meihod 10 inierkes woiving according LO the i(ardar, Wrisi and 
Zhang equation. 

... 

?he dynamic evolution of spatial patterns is one of the most exciting areas of nonlin- 
ear phenomenology. A particular aspect of this general problem involves the growth 
of thin interfaces in far-from-equilibrium conditions. Well known examples include 
directional solidification in binary alloy systems [l], dendritic growth [Z), Viscous 
fingering in HeleShaw cell [3], and film growth by vapour deposition [4]. These 
problems usually involve nonlinear, non-local dynamical equations for the time evolu- 
tion of the interface shape (for recent reviews, see [SI). Recently, Jasnow and Vifials 
provided evidence that the transient dynamics in the viscous fingering problem has a 
self-similar growth regime [6]. They further developed a numerical renormalization 
group (RG) method to extract the scaling exponents of such a growing interface. In 
this method, one maps the two phases separated by the interface onto a spin sys- 
tem upon which the usual Wilson-type block-spin transformation is applied [7]. The 
transverse length scale, Le. the finger width, is then used to force a match at different 
times and different blockage. From these matching conditions one obtains the scaling 
exponent [MI. 

While the method of Jasnow and Vitials is ideal for dynamical systems where a 
finite wavelength pattern is selected, such as in the viscous fingering problem, there 
are other situations where there is no such selection and the interface shape is ran- 
dom. In this case a proper matching condition is needed if one is to apply numerical 
RG. Furthermore, there are cases where the transverse and longitudinal lengths scale 
differently [9]-special care must be taken in these situations. The purpose of this 
short articie is io present a generaiizaiion of the ivionie G r i o  renormaiizaiion groupi 
(MCRG) technique applicable to problems of interface dynamics far from equilibrium. 
As an illustration we apply the MCRG method to the problem of kinetic roughening 
of an interface growing under non-equilibrium conditions [ll]. 

t By Monte Carlo renormalizalion we mean a numerical RG. Far a review See [IO]. 
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Perhaps the simplest model for kinetic roughening in driven interface growth is 
the stochastic nonlinear partial differential equation proposed by Kardar, Parisi and 
Zhang (wz) 1121: 

ah x 
at 2 
- = vV2h + -(oh)* + U. 

Here h(z ,1)  is the height of the interface from a reference plane at position z and 
time 1.  It is assumed to he a single valued function. The stochastic noise 11 satisfies 
Gaussian statistics with a second moment 

( ~ ( 2 ,  t )q ( z ' , t ' ) )  = 2 0 6 ( 2  - z')6(t  - t ' )  (2) 

..hnm r h a  . ~ n n i s l e r  h m r L n t r  r I ~ n n + a  ~n nnrnmhlr n.,llnlle n .. "rill \ ,---s+nn+o 
w.1111 U I I  ""6Y1a1 "IYICI\CW " I l l Y L I  "11 L . . L U C . , l l , , I  'X"I,'x6C. U, Y a.,,, I\ 'lIC w,,J,a,,,D. 

Consider the behaviour of an interface evolving according to (1). With time, noise 
causes the interface to roughen and form correlations of the heights on ever larger 
length scales (see figure 1). The nonlinear term, which has a purely kinetic origin, 
causes the average position of the interface to move forward in time. The interface 
therefore never equilibrates, but rather reaches a steady state. In the absence of the 
nonlinear term, (1) describes the dynamics of equilibrium roughening [13!, 

While the KPZ equation is an important model for driven surface growth, its 
importance extends into several other physics problems. For example, it describes 
the long-time behaviour of a randomly stirred fluid 1141, the growth properties of the 
Eden model (see, for example, [15]), the behaviour of directed polymers in random 
media 1161, and the evolution of flame fronts [17]. This is due to the fact that the 
KPZ equation is a variant of the ubiquitous noise-driven Burger's equation. 

In studying the kinetics of driven interfaces, the universal, long-time, long- 
wavelength properties of the interfacial width W are of particular interest. The 
scaling behaviour of W, and that of the associated correlation functions, is given by 
the scaling exponents x and z ,  which determine the scaling of the height and time 
variables, respectively. Because of the Galillean invariance of the Kpz equation, these 
exponents obey a scaling relation 

x + r = 2 .  (3) 

At early time 1 << L ' ,  the width scales like W - t P f ( t L - ' ) ,  where p = x / z  and L 
denotes the linear system size. At late times t >> LX, the width saturates according 
to W - C X g ( t L - " ) .  Here g(z) and f (z )  are scaling functions 191. Since W is 
esseniiaiiy the one-point correiation function, this scaiing indicaies ihat the transverse 
(z) and longitudinal ( h )  lengths scale differently with L. 

For substrate dimension d = 1 (and spatial dimension d + l), the exponents can 
be calculated exactly [12]: x = and z = $. These values have been confirmed by 
many numerical studies. For the more interesting case of d = 2, no exact results are 
known and one is forced to use numerical solutions. However, numerical studies are 
rmrupGIGu vy IIucLudLIuII~ dllu cIvJauvGI C,ICLW. 'E date, thzj de iict p:c':ide 
a unique answer [18-201. The numerical difficulty one is faced with at d = 2, the 
critical dimension of the KPZ cquation, is actually a common one. For instance, 
the numerical simulations on the stochastic Sivashinsky equation, the equation which 
describes certain flame front propagation, is also hampered by Similar difficulties 121, 
22 (and references therein)]. 

I.".......--,l I... I--".. "_.^ ...... :-"" " " A  ---"" -.,-- "a.."." 



pigJrc 1, n., in:e<zcc i7 '=r ;* sys:ez a[ 5-c L = -"I" """C "* : = 400; ;hi 
two interfaces an the lower rig111 are the same system a t  RG s~ges  r n  = I and 2. 
Configurations on the lower lei1 itre t lmr  for !he sysle 01 size L = 2048 a t  t = 141, 
and the %.me system with one rtngc of renormalization. Note [he similarilies k tween  
the mmsponding sized sylcm. 

It  is known that MCRG study is useful when the dynamics is controlled by severa! 
fixed points; these muse severe crossover effects in most numerical studies. In these 
situations transient behaviour often obscures the true asymptotic behaviour of the 
system, particularly when the properties a re  only accessible through simulations on 
finite-sized lattices. The  RG transformation helps by iterating away irrelevant length 
scales, driving the system closer towards the fixed point controlling the asymptotic 
dynamics. Recent Successes in the application of MCKG to non-equilibrium systems 
include studies of the kinetics of domain growth [7], spinodal decomposition [SI, the 
transient dynamics of viscous fingering mentioned previously [6] and a study on aggre- 
gation processes [23]. While there is no thcoretical proof that the RG transformations 
used in these works lead to a physical k e d  point, the final results derived from the 
transformations do indicate that the method is Correct. In the following, we will thus 
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be guided by the RG transformations used there. 
From figure 1, it is clear that the interface evolving according to (l), after a 

Wilson-type ‘block-spin’ mansformation (see later), is similar to its earlier state, The 
system remains approximately invariant under a change of length scales, provided 
we rescale both the height and time properly. The relationship between the two, 
combined with the scaling relation (3), determines the value of the exponents. 

We first numerically integrated the wz equation on a g id  to some time 1. The 
transverse coordinate z was then divided into cells of linear size b = 2. The height 
variables h(z) inside each cell was averaged and then rescaled by a factor b x .  This 
completes a level of RG transformation. We repeat this procedure to get higher 
levels of the transformation. Figure 1 shows typical results for d = 1. For all 
levels of renormalization m, we measured the interfacial width W ( L d , m , t )  = 

we obtained f througn the foiiowing matching procedure. in principle, after the 
irrelevant variables have been iterated away, and the system is close to its strong- 
coupling b e d  paint, the probability distributions governing the system remain in- 
variant under further renormalizations. Therefore, any quantity determined after 
transformations of the interface of size Ld should be identical to those obtained af- 
ter m + 1 transformations of a ( L b ) d  sized system. However, since the time scales 
in the larger system have been renormalized one more time, the quantities will be 
at different times 1 and t’; i.e. W ( L d , m , t )  = W ( ( L b ) d , m  + 1 , t ’ ) .  This is our 
matching criterion. The time rescaling factor is then related to z by t i l t  = b”. 7b 
ensure that the system is close enough to its k e d  point, the matching should occur 
over several values of m. In order for this procedure to work, one must know how 
to rescale the height variables properly. In other words, we must h o w  x, whose 
value is, as yet unknown. We therefore chose many trial values for x and used the 
matching condition to get a corresponding 2. These values were then used to check 
whether (3) is obeyed. The pair that satisfied this relation with the smallest error was 
taken to be the asymptotic result. We refer this procedure as ‘predicted matching’ 
since the value of z is predicted from matching. 

In d = 1, we integrated the KPZ equation using an Euler scheme up to t = 400 
using a mesh size of AZ = 1.0 and a time step At = 0.01. The parameters were 
chosen to be 2 D / A t  = 1, U = 1.0 and X = 70. We studied systems of size 
L = 40% and L = 2048. ’lb obtain reasonable statistics we averaged over 100 
independent runs for each L.  In this case seven different matching as described 
earlier were carried out. From this matching procedure, our estimates from matching 
at different levels of the RG are listed in table 1. Note that the values of x have 
essentially converged after three RG levels on the larger system. This gives an average 
vaiue of x = 0.48 and 2 = i .52, with an error of about 5%,  in reasonabie agreement 
with the known results. 

As a second check, we assumed the time rescaling relationship t’/t = 6’ was true 
explicitly. Thus giving a time t of the 2048 system, t h e  corresponding 1‘ of the 4006 
system is computed. I f  the values used for s and z were correct, the widths of the 
two systems at 1 and 1’ should be equal-differences between the widths were taken 
to be due to an incorrect choice of the exponent s. For each pair of the trial x and z ,  
the percentage errors between the widths were calculated as function of time 1 .  The 
value of the exponents for which the error is Smallest sewed as a selection Criterion. 
Note this ‘forced matching’ procedure assumes a value for z in the beginning. The 
results of this procedure are listed in table 1. The estimated values of the exponents 

J [ K h  .. . - (h))2)/LdI.  
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Table 1. Roughness exponent x in one dimension for different levels of RG. System sizes 
of L = 2048 and 4096 am used lo do the matching. Other parameters are Y = 1.0,  
X = 70, 2D/Ai = 1 ,  At = 0.01. The first mw lis& the matching levels of RG on 
each system. The semnd mw are values of x from forced matching. The third mw are 
from predicted matching. The values have ssenlially mnverged after three RG levels. 

O i l  1R m 3/4 4/5 516 6n 

0.476 0.480 0.482 0.482 0.484 0.483 0.481 
0.475 0.479 0.480 0.482 0.481 0.482 0.478 

are x = 0.48 and z = 1.52, with errors of about 5%. Again, these results are 
consistent with the known results. 

For d = 2, the Same procedure was repeated. We integrated the KF'Z equation 
up to 1 = 160 using At = 0.001 and AZ = 1.0. The parameters were chosen to 
be. 2 D / A t  = 1, v = 1.0 and X = 240. We simulated systems of sue L z  = 512' 
and L2 = 256'. The results were averaged over 40 and 50 independent runs for the 
two systems respectively. 'RI make sure that one is well into the asymptotic regime, 
two test runs were also performed up to 1 = 750 for each of the systems. The two 
different matching procedures mentioned previously were applied here and the results 
are listed in table 2. The wlues of x have not converged for the five levels of RG 
possible on these system sizes. The last stage of RG gives x = 0.298 and f % 1.7, 
which indicates /3 % 0.17. The values of /3 for all stages of RG are smaller than that 
of [20], and closer to those in [lS] and [19]. However, in order to make a conclusive 
study, larger systems are needed such that more RG iterations can he carried outt. 

Table 2. Roughness exponenr x in WO dimensions for diffcrenl levels of RG. U n a r  
system sizes of L = 258 and 512 are used to do lhe matching. Other parameters are 
Y = 1.0. X = 240, 2DlAt  = 1. At = 0.001. Ihe first TOW lists the matching levels 
of RG on each syslem. The m o n d  row are values of x from forced matching. The third 
row are from predicled matching. 

011 112 U3 3/4 4/5 

0.161 0.230 0.263 0.281 0.298 
\ \  0.1M 0.230 0263 0.2112 0.299 

\ 

As mentioned previously, the RG transformations help to iterate irrelevant length 
scale away and reveal the asymptotic hehaviour of the dynamics. It also allows us' to 
study the crossover effect known to occur in the KPZ equation [24, 251, in d = 1 .  
We used the Same parameters as quoted earlier except that the nonlinear coupling 
constant was smaller, X = 30. This value of X gives quite a wide range in time over 
which the system crosses over from the trivial fixed point controlling the equilibrium 
roughening dynamics to the strong coupling fixed point of the KPZ equation [24]. 
We integrated KF'Z equation to 1 = 200 and averaged over 200 independent runs. 
Fixing the exponent x = 0.5, the matching procedures described earlier gave values 
of z at various times. However, at a given time, we expect that higher levels of 
RG should give values closer to the asymptotic result. In figure 2 the values of z at 

\ 

t ?he current study required more than 300 mu hours on a Cray XMP computer. A comparable sludy 
of larger-sized syslems in 2 C l  dimensions will require at lea61 20 10 50 times more computer time. 
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different times are plotted for RG levels of m = 2 , 4 , 6  on the larger system, which is 
matched with m = 1,3,5 of the smaller system. We found that higher level matching 
consistently gives values closer to the asymptotic result 2 = 1.5 at earlier times. This 
indeed indicates that the RG procedure iterates irrelevant scales away making the 
system closer to the asymptotic regime. A similar trend was also observed in d = 2. 

C Roland and H Guo 
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Figure 2 The exponent z in d = 1 obtained from the matching procedure at different 
times, lor two systems oi sizes L = 4096 and L = 2048 respectively. Other parameten 
are v = 1, A = 30, D / A t  = 1, and At  = 0.01. Vie full cume b for matching of 
K(i levels m = 6 with IVL = 5 or the two syvslcms; the dotted cume is ioor m = 4 with 
m = 3; the broken cuwe is ior V I I  = 2 with nt = I .  Noie nigher ieveis of RG give 
values of L closer to the asymptotic result at earlier times. 

lb conclude, we have extended the MCRG technique to driven interface dynamics, 
in particular to the wz equation. We believe that this method is general and can be 
readily applied to other systems where dynamic scaling is present. 
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